LARGE LANGUAGE MODELS AS OPTIMIZERS

Chengrun Yang~ Xuezhi Wang Yifeng Lu Hanxiao Liu
Quoc V.Le Denny Zhou Xinyun Chen®

{chengrun, xuezhiw, yifenglu, hanxiaol}@google.com
{gvl, dennyzhou, xinyunchen}@google.com

Google DeepMind ~ Equal contribution

Presenter: Junqi Qu

Optimization via Natural Language

* Optimization is a universal problem. From tuning
hyperparameters to designing molecules, we are constantly
searching for optimal solutions.

* The Challenge: Many real-world problems are "derivative-free,"
meaning we cannot compute gradients to guide the search. This
requires specialized, often hand-designed heuristic algorithms.

* Idea: Can we reframe optimization as a natural language task?
Instead of writing a formal algorithm, can we simply describe the
problem to an LLM and ask it to find better solutions iteratively?

OPRO: Optimization by PROmpting
Framework

evaluator

* OPRO is an iterative framework where ... sz
Optimizer. R meta-prompt

LLM as solution-score pairs

optimizer task description

* The Loop:

* Generate: The Optimizer LLM receives a meta-prompt containing the
problem description and past solutions. It generates a new batch of
candidate solutions.

e Evaluate: An objective function (the "Evaluator" or "Scorer") calculates
the score for each new solution.

* Update: The new solutions and their scores are added back into the
meta-prompt.

I have some texts along with their corresponding scores. The texts are arranged in ascending order
based on their scores, where higher scores indicate better quality.

text:
Let’s solve the problem.
score:

63
(... more instructions and scores . ..)

The following exemplars show how to apply your text: you replace <INS> in each input with your
text, then read the input and give an output. We say your output is wrong if your output is different
from the given output, and we say your output is correct if they are the same.

input:

Q: Alannah, Beatrix, and Queen are preparing for the new school year and have been given books
by their parents. Alannah has 20 more books than Beatrix. Queen has 1/5 times more books than
Alannah. If Beatrix has 30 books, how many books do the three have together?

A: <INS>

output:

140

(... more exemplars ...)

Write your new text that is different from the old ones and has a score as high as possible. Write the
text in square brackets.

Figure 3: An example of the meta-prompt for prompt optimization with instruction-tuned PaLM 2-L
(PaLM 2-L-IT)on GSMS8K, where the generated instruction will be prepended to the beginning of
“A:” in the scorer LLM output (A_begin in Section 4). <INS> denotes the position where the generated
instruction will be added. The blue text contains solution-score pairs; the purple text describes the
optimization task and output format; the orange text are meta-instructions. Appendix E.2 presents the
full meta-prompts for other optimizer LLMs.

’mpt"

Primary Application: Prompt Optimization

* The Problem: Prompt engineering is a difficult, manual
optimization task. The search space is discrete, high-dimensional,
and non-intuitive. Semantically similar prompts can yield vastly
different performance.

* OPRO's Approach:

* Goal: Find a natural language instruction (a prompt) that maximizes a
task's accuracy.

* Optimizer LLM: A powerful model (e.g., PaLM 2-L-IT, GPT-4) that
generates new instructions.

e Scorer LLM: A model that evaluates the generated instruction's
performance on a small training set. This can be the same as or different
from the optimizer.

Key results

Table 1: Top instructions with the highest GSM8K zero-shot test accuracies from prompt optimization
with different optimizer LLMs. All results use the pre-trained PaLM 2-L as the scorer.

Source Instruction Acc

, BOSEUIES ., oo s ppons sopmons s supne sopoess mipmun sopeps v spmnes smyer s sopos s pes _gpus
(Kojima et al., 2022) Let’s think step by step. 71.8
(Zhou et al., 2022b) Let’s work this out in a step by step way to be sure we have the right answer. ~ 58.8
(empty string) 34.0

2 CIE e e e e e Spe e e me S S e S e S s g
PalLM 2-L-IT Take a deep breath and work on this problem step-by-step. 80.2
PalM 2-L Break this down. 79.9

gpt-3.5-turbo A little bit of arithmetic and a logical approach will help us quickly arrive at ~ 78.5
the solution to this problem.
gpt-4 Let’s combine our numerical command and clear thinking to quickly and 74.5
accurately decipher the answer.

[*)]
o

(] (V]

S 40 <

g g

U

=" |II| | I
E I

> >

g o -ualiam “ ol -l S 20
5 =]

9 -20 o

© 0
(a) ours minus “Let’s think step by step.” (b) ours minus empty starting point

Figure 4: On 23 BBH tasks, the accuracy differences among instructions found by prompt optimiza-
tion (with the PaLM 2-L scorer and the PaLM 2-L-IT optimizer), “Let’s think step by step.”, and
the empty string (optimization starting point). The bar charts with task names and those with the
text-bison scorer are deferred to Figure 19 in Appendix J.1.

Ablation studies

* Instruction Ordering is Critical: Sorting the trajectory from lowest to
highest score works best. Reversing the order or randomizing it hurts

performance significantly. This suggests a strong recency bias in the
optimizer LLM.

* Batching Improves Stability: Generating a "mini-batch"” of 8
instructions per step provides the best balance between exploration
and optimization stability, similar to mini-batch SGD.

* Explicit Scores Matter: Providing the numerical accuracy scores is
more effective than just showing a ranked list of instructions.

* Task Exemplars are Essential: Without a few examples of the task, the
optimizer doesn't have enough context and fails to optimize effectively.

~
o

100

~
o

100

—
a‘ *;i”p,\é\»‘#"‘-"?'-"&"”‘ a AT T, > >
b Ay o,k ¢ * PN g |9} |9}
© P SIR Ce © N oy © ©
s 3 O0| e 560 5 50
Al 3 | 37 3
B : (U} . |9}
© © © © ’
50 0 50 0

0 100 200 0 100 200 0 800 1600 0 800 1600

steps # steps # evaluated instructions # evaluated instructions
® ascending (default) ® ascending (default) < 1 o 8 (default) < 1 o 8 (default)
descending descending 2 16 2 16
random random 4 4

(a) instruction ordering (b) instruction ordering (c) # single-step instruc- (d) # single-step instruc-
(GSMB8K) (sports_understanding) tions (GSM8K) tions (sports_understanding)

Figure 5: Ablation studies. The dots are the average values across 3 optimization repetitions, and
the shaded regions represent standard deviations. In Figure (c) and (d), the x-axis represents the total
number of evaluated instructions through the optimization; e.g., we run 200 optimization steps when
sampling 8 instructions in each step, run 400 steps when sampling 4 instructions in each step, etc.

Limitations and Failure Cases

* The paper is transparent about the limitations of using LLMs as
optimizers:
* Hallucination: The optimizer can hallucinate function values, highlighting
the need for external tools for reliable calculation.

* Instruction Following: Models don't always adhere to negative
constraints, like "generate a new solution".

* Getting Stuck: Like other optimizers, OPRO can get stuck in local optima,
especially on bumpy or deceptive loss landscapes (e.g., Rosenbrock
function).

* Sensitivity: The process can be sensitive to the initial starting points.

Table 2: Linear regression by optimizer LLMs: the mean + standard deviation of the number of steps
and the number of unique (w, b) pairs explored before reaching the global optima. Both w and b start
from 5 random starting points in [10, 20]. We use temperature 1.0 for all models. We run each setting
5 times. The starting points are the same across optimizer LLMs but are different across 5 runs, and
are grouped by: within the starting region, outside and close to the starting region, and outside and
farther from the starting region. Bold numbers indicate the best among three LLMs in each setting.
See Appendix B.1 for experiment setup.

number of steps number of unique (w, b) pairs explored

Wiue birue
text-bison gpt-3.5-turbo gpt-4 text-bison gpt-3.5-turbo gpt-4

15 14 5.8 £26 7.6 £45 4.0 +15 40.0 £ 124 36.0 £ 152 17.2 +5.1
17 17 4.0 £138 12.6 £ 6.0 6.0 £37 334 £117 53.8 £ 169 26.0 + 106
16 10 38+22 10454 62+31 302+14 428+163 42482
3 5 98 +238 10.8 +27 12.2 +20 55.8 +16.1 39.6 +10.1 33.0 +40
225 23 196xus 264 +183 122x37 10404523 786 +22 42483
2 30 314 +63 42.8 +£97 38.0 159 126.4 + 177 125.6 £ 217 99.0 - 246

36 -1 35.8 £64 454 +169 504 + 188 174.0 + 282 142.2 +312 116.4 + 327

Table 3: Results of the Traveling Salesman Problem (TSP) with different number of nodes n, where
each n contains 5 problems. “# steps” calculates the mean + standard error of optimization steps
for successful runs that find the optimal solution. “# successes” counts the number of problems that
OPRO results in the optimal solution. When no optimal solution is found for any evaluated problem,
the corresponding number of steps is N/A. See Appendix B.2 for experiment setup.

n optimality gap (%) # steps (# successes)

NN FI text-bison gpt-3.5-turbo gpt-4 text-bison gpt-3.5-turbo gpt-4
10 13.0+13 32 +14 0.0 +0.0 0.0 +00 0.0 +00 40.4 +56 (5) 46.8 +93 (5) 9.6 +3.0 (5)
15 94437 12+0s6 44 +13 1.2 +11 0.2 +02 N/A (0) 202.0 +41.1 (@) 58.5 +290 (4)
20 16.0+39 0.2+01 30.4 + 106 44 125 1.4 +06 N/A (0) 438.0 +0.0 (1) 195.5 + 1276 (2)

50 19.7+31 98 +1s5 219.8 + 137 133.0 + 638 11.0 +26 N/A (0) N/A (0) N/A (0)

