
Presenter: Junqi Qu



Optimization via Natural Language

• Optimization is a universal problem. From tuning 
hyperparameters to designing molecules, we are constantly 
searching for optimal solutions.
• The Challenge: Many real-world problems are "derivative-free," 

meaning we cannot compute gradients to guide the search. This 
requires specialized, often hand-designed heuristic algorithms.
• Idea: Can we reframe optimization as a natural language task? 

Instead of writing a formal algorithm, can we simply describe the 
problem to an LLM and ask it to find better solutions iteratively?



OPRO: Optimization by PROmpting
Framework
• OPRO is an iterative framework where an LLM acts as the 

Optimizer.
• The Loop:
• Generate: The Optimizer LLM receives a meta-prompt containing the 

problem description and past solutions. It generates a new batch of 
candidate solutions.
• Evaluate: An objective function (the "Evaluator" or "Scorer") calculates 

the score for each new solution.
• Update: The new solutions and their scores are added back into the 

meta-prompt.



The Heart of OPRO: The "Meta-Prompt"

• da



Primary Application: Prompt Optimization

• The Problem: Prompt engineering is a difficult, manual 
optimization task. The search space is discrete, high-dimensional, 
and non-intuitive. Semantically similar prompts can yield vastly 
different performance.
• OPRO's Approach:
• Goal: Find a natural language instruction (a prompt) that maximizes a 

task's accuracy.
• Optimizer LLM: A powerful model (e.g., PaLM 2-L-IT, GPT-4) that 

generates new instructions.
• Scorer LLM: A model that evaluates the generated instruction's 

performance on a small training set. This can be the same as or different 
from the optimizer.



Key results





Ablation studies

• Instruction Ordering is Critical: Sorting the trajectory from lowest to 
highest score works best. Reversing the order or randomizing it hurts 
performance significantly. This suggests a strong recency bias in the 
optimizer LLM.
• Batching Improves Stability: Generating a "mini-batch" of 8 

instructions per step provides the best balance between exploration 
and optimization stability, similar to mini-batch SGD.
• Explicit Scores Matter: Providing the numerical accuracy scores is 

more effective than just showing a ranked list of instructions.
• Task Exemplars are Essential: Without a few examples of the task, the 

optimizer doesn't have enough context and fails to optimize effectively.





Limitations and Failure Cases

• The paper is transparent about the limitations of using LLMs as 
optimizers:
• Hallucination: The optimizer can hallucinate function values, highlighting 

the need for external tools for reliable calculation.
• Instruction Following: Models don't always adhere to negative 

constraints, like "generate a new solution".
• Getting Stuck: Like other optimizers, OPRO can get stuck in local optima, 

especially on bumpy or deceptive loss landscapes (e.g., Rosenbrock 
function).
• Sensitivity: The process can be sensitive to the initial starting points.






