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What is a Token

e Smallest unit

* ChatGPTis a language model -> “Chat”, "GPT”, “is” ....

* Image can be segmented into 16x16xD



Problem and Motivation

* The Generative Al Landscape

* For language tasks, Large Language Models (LLMs) are the dominant, de
facto models.

* Forimage and video generation, diffusion models are widely considered
state-of-the-art.

* A Puzzling Performance Gap

* Despite advances, LLMs have historically underperformed diffusion
models in visual synthesis.

* For example, on the ImageNet 256x256 benchmark, the best language
model had an FID score of 3.41, while a top diffusion model achieved
1.79—a substantial 48% performance gap



Central Hypothesis

* The paper hypothesizes that the primary reason for this gap is not
the LLM architecture itself, but the lack of a good visual
representation.

 LLMs depend on a visual tokenizer to convert pixel-space inputs
Into discrete tokens.

* This process creates a "visual vocabulary." If this vocabulary is
poor or inefficient, the LLM's generative capabilities are severely
limited, regardless of its power.

* The authors propose that with a better tokenizer, LLMs can
surpass diffusion models.



Background: how LLMs perform visual
generation

* |[t's a two-stage process built on the VQ-VAE (Vector Quantized-
Variational Autoencoder) framework.

* Tokenization (Encoding):

* Avideo Vis fed into a CNN Encoder, producing latent embeddings Z.

* AVector Quantizer then maps each feature vector in Z to the closestvectorina
learned codebook C.

* The index of that codebook vector becomes the discrete token. The resultis a 2D
or 3D grid of tokens.
* Generation (Modeling):
* The token grid is flattened into a 1D sequence.

* An LLM (e.g., a Transformer) models this sequence, either by predicting the next
token (Autoregressive) or by filling in masked-out tokens (Masked LM).

* Adecoder then converts the LLM's generated token sequence back into pixels.



The Solution: MAGVIT-v2

* A new video tokenizer designed to generate concise and

expressive tokens for both images and videos using a common
vocabulary.

* |t features two key innovations:

* ANovel Lookup-Free Quantization (LFQ): This enables the learning of a

very large vocabulary, which is crucial for improving the generation quality
of the language model.

* Architectural Enhancements: The model uses a causal 3D CNN and
other modifications to tokenizing both images and videos seamlessly, a
challenge for previous models.



Innovation 1: Lookup-Free Quantization (LFQ)

* The VQ Bottleneck:

* Improving a VQ-VAE's reconstruction quality by increasing its vocabulary size
does not necessarily improve the LLM's generation quality.

* |n fact, very large vocabularies can hurt the LLM's performance, which is why
most visual tokenizers use small codebooks (e.g., 8,192 tokens).

* The LFQ Breakthrough:

* LFQ replaces the standard high-dimensional codebook lookup. It decomposes
the latent space and uses a simple sign function for quantization, making each
dimension an independent binary decision.

* Crucially, with LFQ, both reconstruction and generation quality consistently
improve as vocabulary size increases.

* This allows them to successfully train with a vocabulary of 2718 (262,144)
tokens, which is far larger than what was previously feasible



Innovation 2: Causal 3D CNN Architecture

* State-of-the-art video tokenizers like the original MAGVIT use 3D
CNNs, which makes it difficult to tokenize single images due to
their temporal receptive field.

* MAGVIT-v2 uses temporally causal 3D convolutions.

* This means the output for any given frame only depends on that frame
and previous frames—never future ones.

* As aresult, the first frame is always processed independently, allowing
the model to tokenize a single image naturally.

* This design was empirically shown to be the most effective architecture.



Table 1: Video generation results: frame prediction on Kinetics-600 and class-conditional genera-
tion on UCF-101. We adopt the evaluation protocol of MAGVIT.

Type Method K600 FVD| UCF FVD| #Params #Steps
GAN TrIVD-GAN-FP (Luc et al., 2020) 25.7+0.7 1
Diffusion Video Diffusion (Ho et al., 2022¢) 16.2+0.3 1.1B 256
Diffusion RIN (Jabri et al., 2023) 10.8 411M 1000
AR-LM + VQ TATS (Geetal..2022) 332418  321M 1024
MLM + VQ  Phenaki (Villegas et al., 2022) 36.4+0.2 227M 48
MLM +VQ MAGVIT (Yuet al., 2023a) 9.9+0.3 76+2 306M 12
MLM + LF(Q non-causal baseline 11.6+0.6 307M 12

. 5.24+02 12
MLM + LFQ MAGVIT-v2 (this paper) 43101 5813 307M 24

Table 2: Image generation results: class-conditional generation on ImageNet 512:x512. Guidance
indicates the classifier-free diffusion guidance (Ho & Salimans, 2021). * indicates usage of extra
training data. We adopt the evaluation protocol and implementation of ADM.

Type Method Fr[j;ﬂl gm;i;n‘rme FI“[?; lgmdlasjfrce #Params #S5teps
GAN StyleGAN-XL (Sauer et al., 2022) 241 2678 168M 1
Diff. + VAE* DiT-XL/2 (Peebles & Xie. 2022) 12.03 1053 3.04 2408 675M 250
Diffusion ADM+Upsample (Dhariwal & Nichol. 2021) 996 121.8 3.85 221.7 731M 2000
Diffusion RIN (Jabri et al.. 2023) 395 216.0 320M 1000
Diffusion simple diffusion (Hoogeboom et al.. 2023)  3.54 205.3 3.02 2487 2B 512
Diffusion VDM++ (Kingma & Gao, 2023) 299 2322 265 278.1 2B 512
MLM + VQ MaskGIT (Chang et al., 2022) 732 1560  22IM 12
MLM + VQ DPC+Upsample (Lezama et al., 2023) 3.62 2494 619M 72
MLM + LFQ MAGVIT-v2 (this paper) ;’g_}, ;ET 1.91 3243 30TM éﬁ




Applications

* The power of the MAGVIT-v2 tokenizer extends beyond just image
generation.

 Video Generation:

* Onthe Kinetics-600 frame prediction benchmark, MAGVIT-v2 achieves an FVD

score of 5.2, significantly outperforming the previous MAGVIT (9.9) and a strong
video diffusion model (16.2).

* Video Compression:

* Human raters preferred MAGVIT-v2's compression quality over the HEVC (H.265)
standard and found it comparable to the next-generation VVC (H.266) codec at

similar bitrates. This is a first for a generative toEenizer.

* Video Understanding:

* The learned tokens serve as a strong representation for downstream tasks like

action recognition, outperforming the previous tokenizer and approaching the
performance of models trained on raw pixels.



Conclusion

* A Paradigm Shift: This work shows the bottleneck for LLMs in vision
was the tokenizer, not the generative model architecture itself.

* Representation is Key: A high-quality, discrete visual representation is
crucial.

* Lookup-Free Quantization (LFQ) is a breakthrough that enables large,
effective visual vocabularies.

 SOTA Performance: For the first time, an LLM-based approach has
surpassed diffusion models on a major image generation benchmark,
with better quality and higher efficiency.

* Future Implications: This research strongly advocates for more focus
on visual tokenization methods and paves the way for more powerful
and unified multimodal LLMs.
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