Language Model Beats Diffusion — Tokenizer is Key to Visual Generation

Lijun Yu^{‡†}* José Lezama[†] Nitesh B. Gundavarapu[†] Luca Versari[†] Kihyuk Sohn[†] David Minnen[†] Yong Cheng[†] Agrim Gupta[†] Xiuye Gu[†] Alexander G. Hauptmann[‡] Boqing Gong[†] Ming-Hsuan Yang[†] Irfan Essa[†] David A. Ross[†] Lu Jiang^{†‡} [†]Google, [‡]Carnegie Mellon University

Present by: Junqi Qu

What is a Token

- Smallest unit
 - ChatGPT is a language model -> "Chat", "GPT", "is"
 - Image can be segmented into 16x16xD

Problem and Motivation

The Generative Al Landscape

- For language tasks, Large Language Models (LLMs) are the dominant, de facto models.
- For image and video generation, diffusion models are widely considered state-of-the-art.

A Puzzling Performance Gap

- Despite advances, LLMs have historically underperformed diffusion models in visual synthesis.
- For example, on the ImageNet 256x256 benchmark, the best language model had an FID score of 3.41, while a top diffusion model achieved 1.79—a substantial 48% performance gap

Central Hypothesis

- The paper hypothesizes that the primary reason for this gap is not the LLM architecture itself, but the lack of a good visual representation.
- LLMs depend on a **visual tokenizer** to convert pixel-space inputs into discrete tokens.
- This process creates a "visual vocabulary." If this vocabulary is poor or inefficient, the LLM's generative capabilities are severely limited, regardless of its power.
- The authors propose that with a better tokenizer, LLMs can surpass diffusion models.

Background: how LLMs perform visual generation

• It's a two-stage process built on the VQ-VAE (Vector Quantized-Variational Autoencoder) framework.

Tokenization (Encoding):

- A video V is fed into a CNN Encoder, producing latent embeddings Z.
- A **Vector Quantizer** then maps each feature vector in Z to the closest vector in a learned codebook C.
- The *index* of that codebook vector becomes the discrete token. The result is a 2D or 3D grid of tokens.

Generation (Modeling):

- The token grid is flattened into a 1D sequence.
- An LLM (e.g., a Transformer) models this sequence, either by predicting the next token (Autoregressive) or by filling in masked-out tokens (Masked LM).
- A decoder then converts the LLM's generated token sequence back into pixels.

The Solution: MAGVIT-v2

- A new video tokenizer designed to generate concise and expressive tokens for both images and videos using a common vocabulary.
- It features two key innovations:
 - A Novel Lookup-Free Quantization (LFQ): This enables the learning of a very large vocabulary, which is crucial for improving the generation quality of the language model.
 - Architectural Enhancements: The model uses a causal 3D CNN and other modifications to tokenizing both images and videos seamlessly, a challenge for previous models.

Innovation 1: Lookup-Free Quantization (LFQ)

The VQ Bottleneck:

- Improving a VQ-VAE's reconstruction quality by increasing its vocabulary size does not necessarily improve the LLM's generation quality.
- In fact, very large vocabularies can *hurt* the LLM's performance, which is why most visual tokenizers use small codebooks (e.g., 8,192 tokens).

The LFQ Breakthrough:

- LFQ replaces the standard high-dimensional codebook lookup. It decomposes the latent space and uses a simple sign function for quantization, making each dimension an independent binary decision.
- Crucially, with LFQ, both reconstruction and generation quality consistently improve as vocabulary size increases.
- This allows them to successfully train with a vocabulary of 2^18 (262,144) tokens, which is far larger than what was previously feasible

Innovation 2: Causal 3D CNN Architecture

- State-of-the-art video tokenizers like the original MAGVIT use 3D CNNs, which makes it difficult to tokenize single images due to their temporal receptive field.
- MAGVIT-v2 uses temporally causal 3D convolutions.
 - This means the output for any given frame only depends on that frame and previous frames—never future ones.
 - As a result, the first frame is always processed independently, allowing the model to tokenize a single image naturally.
 - This design was empirically shown to be the most effective architecture.

Table 1: **Video generation results**: frame prediction on Kinetics-600 and class-conditional generation on UCF-101. We adopt the evaluation protocol of MAGVIT.

Туре	Method	K600 FVD↓	UCF FVD↓	#Params	#Steps
GAN	TrIVD-GAN-FP (Luc et al., 2020)	25.7±0.7			1
Diffusion	Video Diffusion (Ho et al., 2022c)	16.2 ± 0.3		1.1B	256
Diffusion	RIN (Jabri et al., 2023)	10.8		411M	1000
\overline{AR} - \overline{LM} + \overline{VQ}	TATS (Ge et al., 2022)		$\bar{332}\pm \bar{18}^{-}$	321M_	1024
MLM + VQ	Phenaki (Villegas et al., 2022)	36.4 ± 0.2		227M	48
MLM + VQ	MAGVIT (Yu et al., 2023a)	9.9 ± 0.3	76 ± 2	306M	12
MLM + LFQ	non-causal baseline	11.6±0.6		307M	12
MLM + LFQ	MAGVIT-v2 (this paper)	5.2 ±0.2 4.3 ± 0.1	58 ±3	307M	12 24

Table 2: **Image generation results**: class-conditional generation on ImageNet 512×512. Guidance indicates the classifier-free diffusion guidance (<u>Ho & Salimans, 2021</u>). * indicates usage of extra training data. We adopt the evaluation protocol and implementation of ADM.

Туре	Method	w/o g FID↓	guidance IS↑	w/ gı FID↓	uidance IS↑	#Params	#Steps
GAN	StyleGAN-XL (Sauer et al., 2022)			2.41	267.8	168M	1
Diff. + VAE*	DiT-XL/2 (Peebles & Xie, 2022)	12.03	105.3	3.04	240.8	675M	250
Diffusion	ADM+Upsample (Dhariwal & Nichol, 2021)	9.96	121.8	3.85	221.7	731M	2000
Diffusion	RIN (Jabri et al., 2023)	3.95	216.0			320M	1000
Diffusion	simple diffusion (Hoogeboom et al., 2023)	3.54	205.3	3.02	248.7	2B	512
Diffusion	VDM++ (Kingma & Gao, 2023)	2.99	232.2	2.65	278.1	2B	512
$\overline{M}L\overline{M} + \overline{V}Q$	MaskGIT (Chang et al., 2022)	7.32	⁻ 1̄5ē.ō ⁻			⁻ 227M	⁻ 12 ⁻
MLM + VQ	DPC+Upsample (Lezama et al., 2023)	3.62	249.4			619M	72
MLM + LFQ	MAGVIT-v2 (this paper)	4.61	192.4			307M	12
		3.07	213.1	1.91	324.3		64

Applications

 The power of the MAGVIT-v2 tokenizer extends beyond just image generation.

Video Generation:

• On the Kinetics-600 frame prediction benchmark, MAGVIT-v2 achieves an FVD score of **5.2**, significantly outperforming the previous MAGVIT (9.9) and a strong video diffusion model (16.2).

Video Compression:

• Human raters preferred MAGVIT-v2's compression quality over the **HEVC** (**H.265**) **standard** and found it comparable to the **next-generation VVC** (**H.266**) **codec** at similar bitrates. This is a first for a generative tokenizer.

Video Understanding:

• The learned tokens serve as a strong representation for downstream tasks like action recognition, outperforming the previous tokenizer and approaching the performance of models trained on raw pixels.

Conclusion

- A Paradigm Shift: This work shows the bottleneck for LLMs in vision was the tokenizer, not the generative model architecture itself.
- Representation is Key: A high-quality, discrete visual representation is crucial.
- Lookup-Free Quantization (LFQ) is a breakthrough that enables large, effective visual vocabularies.
- SOTA Performance: For the first time, an LLM-based approach has surpassed diffusion models on a major image generation benchmark, with better quality and higher efficiency.
- Future Implications: This research strongly advocates for more focus on visual tokenization methods and paves the way for more powerful and unified multimodal LLMs.