TAKE A STEP BACK: EVOKING REASONING VIA AB-STRACTION IN LARGE LANGUAGE MODELS

Huaixiu Steven Zheng* Swaroop Mishra* Xinyun Chen Heng-Tze Cheng Ed H. Chi Quoc V Le Denny Zhou

Google DeepMind

Present by: Junqi Qu

Reasoning remains hard for LLMs: motivation

- Large Language Models (LLMs) have shown emergent abilities, including multi-step reasoning, through scaling.
- Techniques like Chain-of-Thought (CoT) prompting aim to improve this by generating intermediate steps.
- The Core Problem: Despite progress, even state-of-the-art LLMs struggle with complex reasoning tasks.
- Models can get lost in low-level details, leading to errors in the reasoning path.

Abstraction-grounded reasoning

- **Inspiration:** Human problem-solving. We often "step back" from a difficult problem to consider the high-level principles involved.
- The Proposal: Step-Back Prompting.
 - A technique that enables LLMs to perform
 - **abstraction**—deriving high-level concepts and first principles from specific instances.
 - The model then uses these abstractions to guide its reasoning process, reducing the chance of error.

How it works: A Two-Step process

 Step-Back Prompting consists of two steps, demonstrated to the LLM via few-shot examples

Step 1: Abstraction

- The LLM is prompted to generate a more generic, "step-back question" about a higher-level concept or principle.
- It then answers this abstract question to retrieve relevant facts.
- Step 2: Reasoning
 - Grounded on the high-level facts retrieved in Step 1, the LLM reasons through the steps to solve the original, specific question.
- Abstraction-grounded Reasoning.

Example

• MMLU Physics

...If the temperature is increased by a factor of 2 and the volume is increased by a factor of 8, we can rewrite the ideal gas law as: 2P'(8V) = nR(2T), where P' represents the new pressure.

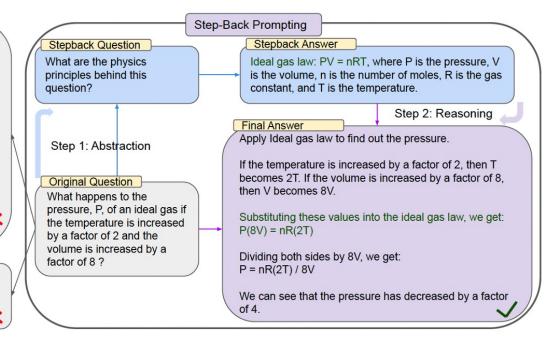
Simplifying the equation, we get: 16P'V = 2nRT or P' = (2nRT) / (16V)

Since n, R, and V are constants, we can write this as: P' = (1/8) * (nRT/V)

Since nRT/V is the original pressure P, we have: P' = (1/8) * P This means the new pressure P' is 1/8 of the original pressure X

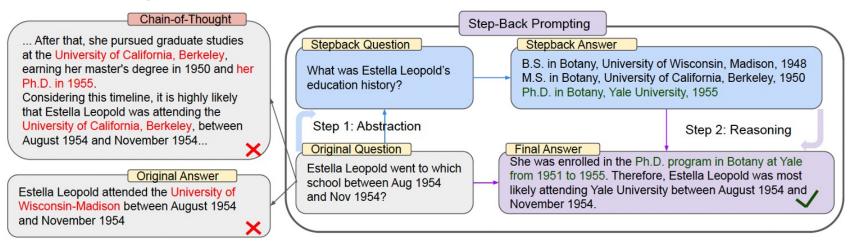
Original Answer

If the temperature is increased by a factor of 2 and the volume is increased by a factor of 8, then the pressure will decrease by a factor of



Another example

• Knowledge QA



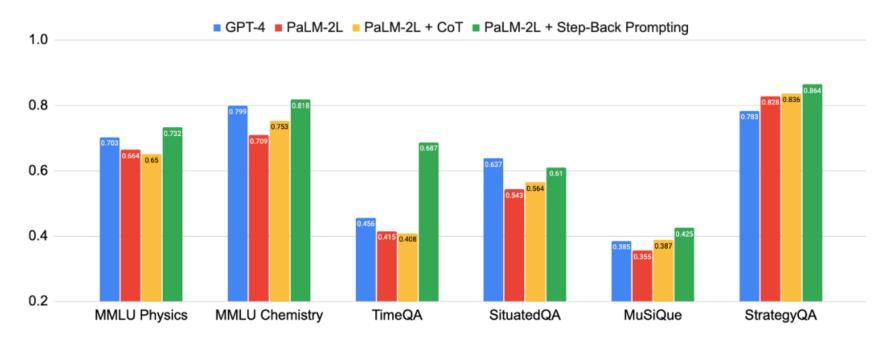
Experimental setup

- Models: PaLM-2L, GPT-4, Llama2-70B.
- Tasks: A diverse set of challenging reasoning benchmarks.
 - STEM: MMLU (Physics, Chemistry), GSM8K.
 - Knowledge QA: TimeQA, SituatedQA.
 - Multi-Hop Reasoning: MuSiQue, StrategyQA.

· Baselines:

- Standard zero-shot and one-shot prompting.
- Chain-of-Thought (CoT).
- "Take a Deep Breath" (TDB).
- Retrieval-Augmented Generation (RAG) for knowledge-intensive tasks.

Results



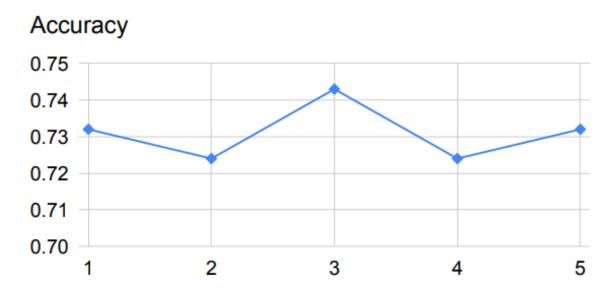
STEM tasks

Table 1: Strong performance of STEP-BACK PROMPTING on MMLU tasks across three model families. CoT: zero-shot Chain of Thought prompting (Kojima et al., 2022), TDB: Take a Deep Breath prompting (Yang et al., 2023).

Method	MMLU Physics	MMLU Chemistry
PaLM-2L	66.4% (0.8%)	70.9% (0.9%)
PaLM-2L 1-shot	64% (1.6%)	75.6% (0.4%)
PaLM-2L + CoT	65% (2%)	75.3% (1.5%)
PaLM-2L + CoT 1-shot	61.5% (1.8%)	76.6% (1%)
PaLM-2L + TDB	65.7% (0.7%)	73.8% (1.1%)
PaLM-2L + Step-Back (ours)	73.2% (1.9%)	81.8% (1.4%)
GPT-4	69.4% (2.0%)	80.9% (0.7%)
GPT-4 1-shot	78.4% (2.4%)	80.5% (1.6%)
GPT-4 + CoT	82.9% (0.5%)	85.3% (1.0%)
GPT-4 + CoT 1-shot	79.3% (1.0%)	82.8% (0.5%)
GPT-4 + TDB	74.4% (4.0%)	81.5% (1.3%)
GPT-4 + Step-Back (ours)	84.5% (1.2%)	85.6% (1.4%)
Llama2-70B	51.9% (3.6%)	55.7% (2.1%)
Llama2-70B 1-shot	57.3% (1.6%)	58.5% (2.5%)
Llama2-70B + CoT	59.3% (2.0%)	64.1% (1.2%)
Llama2-70B + CoT 1-shot	59.6% (2.0%)	68.1% (1.4%)
Llama2-70B + TDB	60.4% (2.1%)	63.6% (1.9%)
Llama2-70B + Step-Back (ours)	64.8% (1.5%)	66.7% (1.6%)

Ablation studies

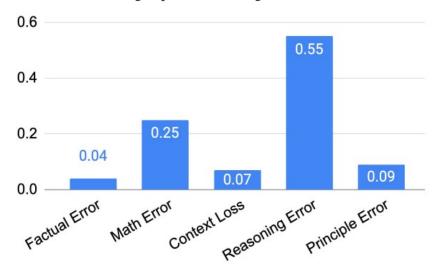
Figure 3: Ablation study of STEP-BACK PROMPT-ING accuracy using PaLM-2L on MMLU highschool Physics against the number of few shot exemplars: robust performance with respect to a varying number of shots.



Number of Shots

where do errors come from?

- **Principle Error**: The error happens at the step of Abstraction, where the first principles generated by models are wrong or incomplete.
- Factual Error: There is at least one factual error when the model recites its own factual knowledge
- **Math Error**: There is at least one math error in the intermediate steps when math calculations are involved in deriving the final answer.
- Context Loss: There is at least one error where the model response loses context from the question, and deviates from addressing the original question
- **Reasoning Error**: We define Reasoning Error as when the model makes at least one error in the intermediate Reasoning steps before arriving at the final answer.



Step-Back vs. Decomposition

- Step-Back Prompting is fundamentally different from problem decomposition methods.
- **Decomposition:** Breaks a problem into smaller, lower-level subproblems. It's a **one-to-many** mapping, going deeper.
 - Example: "Who did Steve Jobs work for in 1990?" -> "Was he employed in 1990? If so, by whom?"
- Abstraction (Step-Back): Generalizes a specific question to a single, higher-level concept. It's a many-to-one mapping, going broader.
 - Example: "Who did Steve Jobs work for in 1990?" -> "What is Steve Jobs' employment history?"