PSWF and Complex Wavelets as
Activation Functions in INR
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Implicit Neural Representation (INR)

* INR represents data as a continuous function, which is modeled by a
neural network such as an MLP.

* For example, a 100x100 image can be represented as a continuous
function:

F(z,y) = (R,G, B)

* where (x,y) are spatial coordinates and F outputs RGB color values.



Mathematical Foundations

* Taylor Series:

 Euler’s Formula:
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Mathematical Foundations

* Fourier Transform: All Functions Are Combinations of Frequencies
fO = [ Flw)e do

* Why Frequency?
* Many real-world signals (images, audio) contain inherent periodic patterns,

and Trigonometric functions (sin/cos) can capture these patterns more
compactly and expressively.

* Neural networks with ReLU or GELU tend to learn low-frequency components
first (spectral bias). Using frequency-based activations (e.g. complex wavelet,
PSWF) help the model to learn high-frequency information.



Window Functions

* Why Window Function?

 We are only interested in certern range of time (and frequency) in a signal. So
we apply a window to focus on a local region of the signal to cut into what we
want.

fwindowed () = f(t) - w(t)

* The Simplest Example: Rectangular Window

wlt) = {1, t < T

0, otherwise



Prolate Spheroidal Wave Function (PSWF)

* Band-limited to [-W, W], time-limited to [-T, T], solve the following
dual equation, and we get the PSWF.

T 2
t)|“dt "
max fgoT 2l )2 subject to f(w) = 0 for |w| > W
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* Solutions to both problems are the same: the Prolate Spheroidal

Wave Functions (PSWFs) — optimally concentrated in both time and
frequency.

subject to f(t) =0for [t| > T



Motivation

* Activation Functions = Basis Functions
e Activation functions play the role of basis functions in neural networks.

e Window Functions = Good Basis Functions
* |In signal processing, window functions are designed to achieve localization in
both time and frequency, making them effective for signal representation.
e > Use Window Functions as Activation Functions

* Both papers use popular window functions (complex wavelets/PSWF) as
activations.



What does PIN do?

* PSWF Activation Replacement

K

Py(z) = Z a, - pswi, (Wx + b)
k=0

* Learnable Time-Frequency Localization (parameter in PSWF)

p(z) =T - Y(wz) +b



Experiment
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Figure 7: Hyperparameter Turning of PIN: PIN demonstrates a sharp linear increase in PSNR
with the addition of more hidden neurons and layers compared to existing INRs. Instead of be-

coming unstable with higher learning rates, PIN stabilizes its PSNR, maintaining nearly constant
performance.



What is a Wavelet?

* Traditional basis functions like sine and cosine are global:
P(t) = e’

* They extend over all space or time. Wavelets are localized in both time and
frequency

* Morlet wavelet:

t?

Y(t) = et - e i

* It combines oscillation (via e {iwt}) and localization (via Gaussian window)



Key Theoretical Contributions

* The expressivity of INRs is governed by the Fourier transform of the
first-layer activation.

* Wavelet-INRs retain time-frequency localization and multi-scale
structure, even after stacking layers with non-linearities.

* Proposes a split INR architecture to decouple
smooth (low-frequency) and singular (high-frequency) components.



