
BAYESIAN LOW-RANK 
ADAPTATION FOR LARGE 
LANGUAGE
MODELS

Type Research Paper

Comments Bayesian LoRA for LLM

Date

Motivation

Overconfidence in fine-tuned LLMs.

While fine-tuning large language models is essential both for downstream 
tasks and for building instruction-following agents, it often induces severe 
overconfidence—models assign excessive probability to their predictions, 
even when theyʼre wrong. This miscalibration is especially dangerous in 
safety-critical settings (e.g., medical diagnosis, finance, experimental design) 
and when only limited fine-tuning data is available .

The promise and challenge of Bayesian uncertainty.

Bayesian deep learning naturally addresses overconfidence by modeling 
posterior uncertainty, but naively applying it to all billions of LLM parameters is 
computationally infeasible. At the same time, parameter-efficient fine-tuning 
methods like LoRA train only a small, low-rank adapter on top of a frozen 
backbone—drastically reducing trainable parameters. This suggests a sweet 
spot: perform a post-hoc Bayesian Laplace) approximation only over the low-
rank LoRA weights, thereby gaining uncertainty estimates without altering 
standard fine-tuning pipelines or incurring prohibitive costs.

Compared to previous works?

Bayesian deep learning for language models
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Earlier Bayesian treatments focused almost exclusively on large-scale pre-
training, where the benefits of Bayesian inference are muted by enormous 
datasets and reasonably well-calibrated pretrained models . In contrast, 
Laplace-LoRA targets the fine-tuning setting, where calibration is known to 
degrade substantially (even after instruction tuning) and data can be 
scarce.

Parameter-efficient fine-tuning PEFT methods

Methods like LoRA and other PEFT approaches train only a small “adapterˮ 
on top of a frozen backbone. Until now, there has been no Bayesian 
inference method designed specifically for these adapters—Laplace-LoRA 
is the first to bring a post-hoc Laplace approximation to only the low-rank 
LoRA weights, preserving PEFTʼs efficiency.

Bayesian approximations over attention weights vs. parameters

Previous work explore Bayesian priors over attention weights, which (a) 
require redefining training pipelines and (b) entail reasoning over up to a 
billion attention parameters—whereas Laplace-LoRA remains post-hoc, 
keeps all pipelines unchanged, and reduces the inference problem from 
billions of weights to only 6 million LoRA parameters.

Laplace approximations at scale

Classical Laplace methods for neural networks have rarely been applied to 
language models, and then only at the final layer of much smaller models. 
Laplace-LoRA scales this idea to all LoRA adapters in models 100 larger 
by using Kronecker-factored, low-rank Hessian approximations.

Regularization-based calibration

Techniques such as Mixout, and KL/L2 regularization on BERT outputs  
improve calibration by altering the fine-tuning objective. These are 
orthogonal to Laplace-LoRA, since Laplace-LoRA does not change the 
MAP weights—it simply wraps a Bayesian uncertainty estimate around 
them.

Background

Instead of updating the full  ––which would be   trainable 
parameters––we keep   frozen and learn only a low-rank “correctionˮ  . 

W  ∈0 R
n  ×n  out in n  ×out n  in

W  0 ΔW
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Concretely:

 Layer output before adaptation

 ,

where   is the input and   the output.

 Introduce a perturbation

We set

 .

 Low-rank factorization of  

Instead of learning the full  , we write

 ,

with

 .

Then

 .

 Parameter savings

Full fine-tuning would train   parameters.

LoRA only trains the two small matrices   and  , i.e.   
parameters, which is typically orders of magnitude smaller when   is, 
say, 8 or 16.

 Memory and compute benefits

We only compute gradients for  , not for the giant  .

We save both GPU memory (for optimizer states) and computation, yet still 
adapt the model effectively.

Laplace Approximation

Bayesian Inference

 

h = W  a0

a ∈ R
n  in h ∈ R

n  out

W = W  +0 ΔW , so h = W a = W  a +0 ΔW a

ΔW

ΔW

ΔW = B A

B ∈ R , A ∈n  ×n  out lr R , n  ≪n  ×n  lr in
lr n  , n  in out

h = W  a +0 B (A a)

n  ×out n  in

A B n  (n  +lr in n  )out

n  lr

A, B W  0

P (θ ∣ X, y) ∝ P (y ∣ X, θ) P (θ)
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Posterior  : updated belief about the model parameters   after 
having observed inputs   (a batch of token sequences) and their targets   
(either class labels or next tokens).

Likelihood  : the probability that the model with parameters   
assigns to seeing targets   given inputs  . In a classification task this is 
typically a softmax-categorical distribution; in language modeling itʼs the 
conditional probability of the next token.

Prior  : belief about   before seeing any data. In this work itʼs chosen to 
be an isotropic Gaussian distribution

 ,

i.e. zero mean and precision  .
This is usually intractable. 
Laplace approximation turns an intractable Bayesian posterior into a tractable 
Gaussian around the MAP solution:

 

 

In practice this is exactly what we get by standard fine-tuning (maximizing the 
posterior).

Quadratic (second-order) Taylor expansion around the MAP

 .

Since weʼve approximated the log-joint by a quadratic, the posterior becomes 
Gaussian.

Gaussian posterior approximation

 .

Concretely, because

 ,

and the priorʼs Hessian is just  , we end up with

 ,

P (θ ∣ X, y) θ

X y

P (y ∣ X, θ) θ

y X

P (θ) θ

P (θ) = N (0, λ I)−1

λ

L(y, X; θ) = log P (y ∣ X, θ) + log P (θ) = log P (θ ∣ X, y) + const

θ  =MAP arg max  L(y, X; θ)θ

L(y, X; θ) ≈ L(y, X; θ  ) −MAP  (θ −
2
1 θ  ) [∇  L(y, X; θ)]  (θ −MAP

⊤
θ
2

θ  MAP

θ  )MAP

P (θ ∣ D) ≈ N (θ; θ  , Σ), Σ =MAP −[∇  L(y, X; θ)]  θ
2

θ  MAP

−1

∇  L =θ
2 ∇  log P (y ∣θ

2 X, θ) + ∇  log P (θ)θ
2

−λI

Σ = −[∇  log P (y ∣θ
2 X, θ)]  +

θ  MAP

−1
λ I−1
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i.e. the inverse of the Hessian of the negative log-joint at the MAP.

Fisher as stand-in for Hessian

To ensure positive definiteness, instead of computing the exact Hessian of the 
log-likelihood

 , they replace it with the Fisher Information

 .

Under mild conditions, Fisher is positive semi-definite and often a good proxy 
for the curvature.

Kronecker-factored approximation KFAC

Even restricting to only LoRAʼs 6M parameters,   would still be a 6M6M 
matrix. So they further exploit the fact that each LoRA update lives inside a 
linear layer. For each adapter-layer  , one can write its block of Fisher as

 ,

where

  is that layerʼs input activation,

  is the gradient w.r.t. that layerʼs output,

and   is the Kronecker product.

This KFAC structure lets them store and invert much smaller matrices for 
  and   instead of the full block.

Linearized model and posterior over logits

We approximate the network   by its first-order Taylor expansion 
around the MAP point  :

 .

Because  is now Gaussian (mean  , covariance   from the inverse 
Fisher + prior), the output logits become Gaussian as well:

 ,

with   computed in closed form.

∇  log P (y ∣θ
2 X, θ)

E  [∇  log P (y ∣y∼P (y∣x  ,θ)n θ x  , θ) ∇  log P (y ∣n θ x  , θ) ]n
⊤

F

e

F  =e  E[(a  a  ) ⊗∑n=1
N

e e
⊤ (g  g  )]e e

⊤

a  e

g  =e ∇  log P (y ∣b  e
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⊗
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⊤

f  (x)θ

θ  MAP

f  (x) ≈θ f  (x) +θ  MAP
∇  f  (x) (θ −θ θ  MAP

θ  )MAP

θ θ  MAP Σ

f(x) ∼ N (f  (x), Λ)θ  MAP

Λ
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We can then sample from this Gaussian over logits to get uncertainty—just 
draw   and compute

 ,

where  .

Why this matters

We never have to re-train or hold out a validation set for calibration—
everything is “post-hoc.ˮ

We only pay the cost of accumulating a few Kronecker factors per layer 
(and inverting them), not of dealing with the full billions×billions Hessian.

The result is a lightweight, efficient Laplace approximation over your low-
rank adapters that produces well-calibrated uncertainty estimates.

Methodology

Laplace-LoRA makes a full Laplace approximation over the LoRA adapters both 
tractable and memory-efficient:

Adapter as two linear layers. Rather than viewing the low-rank update 
  as one single “bigˮ low-rank weight matrix, they treat it as two 

consecutive linear layers with weight matrices

 ,

so that the usual LoRA forward is  .

Kronecker-factored curvature with low-rank compression. The Laplace 
approximation requires the Hessian (or Fisher) of the log-likelihood, which for 
a single LoRA layer has a Kronecker-factor structure  . One 
of these factors is size   (with   in LLaMA27B, which would 
erase all memory savings if materialized explicitly. Instead, they approximate 
that large factor by a low-rank proxy of rank  , chosen independently of 
the adapter rank  .

Incremental, end-to-end low-rank pipeline. To preserve LoRAʼs tiny memory 
footprint and plug-and-play workflow, Laplace-LoRA performs all three steps 
in low-rank form (never forming a full   matrix):

 Incremental factor computation (never build the full factor first),

ξ ∼ N (0, I)

 (x) =f
~

f  (x) +θ  MAP
L ξ

LL =T Λ

ΔW = BA

A ∈ R , B ∈n  ×n  lr in R
n  ×n  out lr

h = W  a +0 B (A a)

∼ (AA ) ⊗T (GG )T

d × d d = 4096

n  kfac

n  lr

d × d
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 Marginal-likelihood optimization under the low-rank Laplace, and

 Low-rank linearized predictions by propagating uncertainty through the 
networkʼs Jacobian without full Hessian inversion.

Together, these design choices let Laplace-LoRA wrap a Bayesian Gaussian 
posterior around just the few-million LoRA parameters—yielding well-calibrated 
uncertainty estimates with only a few percent extra memory and compute—while 
leaving every other part of the fine-tuning pipeline unchanged.

Experimental Results

In-distribution fine-tuning and evaluation

Setup: LLaMA27B is fine-tuned with LoRA on six tasks Winogrande-S/M, 
ARCChallenge/Easy, OBQA, BoolQ for 10 k steps (batch size 4, saving 
checkpoints every 1 k steps. Post-hoc Laplace approximations LA on all 
adapter weights; LLLA on just the output layer) are applied at each checkpoint.

Baselines: MAP (standard LoRA, MC dropout, checkpoint ensembles, deep 
ensembles, and temperature scaling.

Metrics & Findings: Across all six tasks, LA maintains the same accuracy as 
MAP but cuts expected calibration error ECE roughly in half (from ∼30% 
down to ∼7% and lowers negative log-likelihood NLL by ∼0.5 nats versus 
MAP, outperforming all baselines; LLLA yields smaller gains .

Evaluations under distribution shift

Smaller shifts: Models fine-tuned on OBQA are tested on ARCC and ARCE.

Larger shifts: Same checkpoint is evaluated on four MMLU subjects CS, Eng, 
Law, Health).

Results: LA delivers substantial ECE and NLL improvements over MAP and 
other post-hoc methods while keeping accuracy unchanged (or slightly 
improved in CS, for both small and large distribution shifts .

Memory and runtime cost

Adding Laplace-LoRA on top of standard LoRA incurs only a 15% memory 
overhead and about 10% extra compute when accumulating factors at every 1 
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k steps (practically reducible to ∼1% if done once) . This confirms that the low-
rank KFAC Laplace pipeline preserves LoRAʼs efficiency.
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