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Motivation

Model size vs. deployment feasibility: Modern networks have overgrown in 
parameters and memory footprint, making on-device or large-model 
deployment costly. Traditional compression (pruning, quantization, distillation) 
recovers accuracy via expensive fine-tuning—often infeasible for very large 
models.

Fine-tuning-free compression: Data-free methods eliminate retraining on the 
original dataset—vital for privacy-sensitive or resource-constrained settings—
but conventional pruning still discards low-importance neurons, causing 
accuracy drops that almost always require fine-tuning.

Intra-Fusion This work): Inspired by federated learning and Optimal 
Transport–based model fusion OTFusion), this meta-pruning framework 
recycles pruned neuronsʼ information into survivors, unifying pruning and 
fusion into a single data-free pipeline without accuracy loss.

Optimal Transport OT

A methematical framework to compare probability distributions.

Two discrete distributions

We have a “sourceˮ distribution

 

supported on points   with masses   (this could be importance 
scores).
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And a “targetˮ distribution

 

on points   with masses  .

Both   and  .

Cost matrix  

  has entries

 , e.g. the squared Euclidean distance

 .

Transport plan  

  is a nonnegative matrix where

  represents how much mass you move from   to  .

Marginal constraints

Row sums equal source masses:

 , i.e.  .

Column sums equal target masses:

 , i.e.  .

Objective

 ,

i.e. find the cheapest way to move the entire mass of   to match  .

Think of   as piles of “earthˮ at locations   and   as holes at  . We pay cost 
  per unit of earth we move from pile   to hole  . OT finds the cheapest 

assignment of earth to holes that exactly fills each hole and empties each pile.

Algorithms and Methodologies

Structured Pruning: Group-by-Group.
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Both conventional pruning and Intra-Fusion start from the same setup:

A group   of   neuron-pairings (its group cardinality is  ) → compress down 
to   pairings (  ).

An importance vector  , which assigns each pairing an agnostic 
score (e.g. the  -norm of its weights).

Conventional Pruning (Algorithm 1)
 Find the  th largest entry in   and call it threshold  .

 Keep the   pairings whose importance  .

 Discard the other   pairings.

 The resulting group   has exactly   pairings.

Most prior work has concentrated on crafting ever-better importance metrics  , 
but still follows this “keep-top-  , drop-the-restˮ routine unchanged.
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Intra-Fusion Meta-Pruning (Algorithm 2)
Rather than throwing away the less-important pairings, Intra-Fusion fuses their 
information into the survivors via an Optimal Transport OT plan:

 Source distribution  :

Treat each of the   original pairings as a discrete “pile of massˮ on the space 
of neuron-pairing weight vectors, with total mass proportional to its 
importance score.

 Target distribution  :

Choose   “targetˮ neurons—either the same top-   survivors or   cluster-
centroids of the original  —and assign each a probability mass (uniformly or 
again by importance).

 Cost matrix  :

Quantify how “far apartˮ each source pairing is from each target, e.g. via 
normalized  -distance of their concatenated weight vectors.

 Solve OT

 .

This yields an   transport plan   telling how to move mass from each of 
the   sources into the   targets.

 Fuse pairings

Use the columns of   as weights: each new “fusedˮ pairing is a weighted sum 
of all   original pairings, according to the corresponding column of  . The 
result is a compressed group   of cardinality   that recycles information 
from all   original pairings instead of discarding   of them.

Transportation cost

Design a metric that measures how similar/dissimilar neurons are.

Batch Normalization

A technique to stabilize and accelerate the training of deep neural networks by 
normalizing layer inputs.

Motivation
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During training, as parameters in earlier layers change, the distribution of 
inputs to later layers shifts, forcing those layers to constantly adapt. Batch 
normalization BatchNorm) reduces this shift by keeping inputs to each 
layer more stable.

The Forward Pass

Given a mini-batch of activations   for a single neuron (or 
feature channel) in one layer:

Compute batch statistics

 .

Normalize each activation:

,

where   is a small constant for numerical stability.

Scale and shift: introduce two learned parameters,   (scale) and   
(shift), to allow the network to recover the identity transform if needed:

.

The output   is then passed on to the next layer.

Inference Mode

At test time, we donʼt have meaningful batch statistics, so BatchNorm uses 
running averages of   and   that were accumulated during training. 
Concretely, during training we update

 ,

and at inference we normalize each activation   as

 .

Key Properties and Variants
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Per‐feature/channel normalization In convolutional layers, statistics 
are computed over the batch and spatial dimensions, separately for 
each channel.

Learnable parameters   let the layer choose any desired output 
scale and bias.

Use -distance between the neuron-pairingsʼ weight vectors to define the cost 
:

 .

OT will preferentially fuse together neurons whose weight‐patterns are more 
similar.

BatchNorm layers sit “in the middleˮ of the weights and activations, so if  just grab 
the raw weight vectors and biases to build the cost matrix  , we are ignoring the 
fact that every forward pass actually does

 .

The authors “foldˮ a BatchNorm layer into the preceding linear (or convolutional) 
layer so that they no longer need a separate BN at inference time. Concretely, 
suppose the layer originally computes

 ,

and then we apply BatchNorm:

 ,

where

  is the original weight vector,

  is its bias,

  and   are the running mean and variance learned by BatchNorm,

  and   are the BNʼs learned scale and shift,

  is a small constant for numerical stability.

We want a single “foldedˮ layer

 

(γ, β)

ℓ1 C

C  =ij  

(normalizer)

∥ w −w  ∥  

(i)
target
(j)

1

C  ij

z = w x + b, y = BN(z) = γ  +
 σ+ε

z−μ β

z = w x + b

BN(z) = γ  +
 σ+ε

z−μ β

w

b

μ σ

γ β

ε

z  =new w  x +new b  new

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 6



that exactly replicates  .  Plugging in:

 .

Thus we set

 .

Now   is absorbed into the weights and bias.

The authors set  , then

 

Probability Distribution

Uniform distribution.

Every neuron pair receives exactly the same probability mass.

If there are   total pairs, each pair has probability  .

This approach makes no use of the underlying importance values: it treats 
all pairs as equally likely.

Importance-informed distribution.

Each pairʼs probability is proportional to its importance score.

Intuitively, neuron pairs deemed more “importantˮ are sampled more often.

To convert raw importance values   into probabilities  , we need a 
normalizing step:

Simple normalization:

  

Softmax normalization:

  .

Both ensure that all   sum to 1

There is no final accuracy difference however we choose the distribution type 
according to the authors.
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Given the cost matrix  , and our probability distributions  
and 

 , we can finally derive the optimal transport map  .

Consequently, we proceed to traverse each layer within the group denoted as  , 
and rather than removing neurons of diminished significance, we opt to generate 
fused neurons through a process of matrix multiplication with the transport map   
.

Empirical Results

Figure 3 ResNet-50 on ImageNet

Left panel (ℓ₁ importance) vs. Right panel Taylor importance).

In both cases, as you increase sparsity, accuracy falls—but the Intra-Fusion 
curves always lie above their Default counterparts.

Figure 4 ResNet-18 on CIFAR10 & VGG11BN on CIFAR100

Both networks show the same qualitative trend:
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Intra-Fusion (solid) preserves significantly more accuracy than Default 
(dashed) at every sparsity level.

Figure 5 directly measures how “closeˮ each pruned modelʼs outputs remain to the 
un-pruned ResNet-18 (on CIFAR10, by computing the ℓ₂ distance between their 
final logits for a large batch of inputs.  Each subplot is a histogram of those 
distances under two schemes—Default pruning (red) vs. Intra-Fusion (blue)—at 
different neuron-sparsity levels:

(a) 10 % sparsity

Default: mean ℓ₂-distance  2.0

Intra-Fusion: mean  1.5

Blue bars are more tightly clustered near zero, so most outputs stay very 
close to the original.

(b) 20 % sparsity

Default: mean  4.6

Intra-Fusion: mean  2.8

Again, Intra-Fusionʼs distribution is shifted significantly toward smaller 
deviations.

(c) 30 % sparsity

Default: mean  8.3

Intra-Fusion: mean  5.8
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At higher sparsity the gap widens—the blue histogram remains far more 
concentrated at low distances, whereas default pruning spills out to much 
larger errors.

Factorizing Model Training

Split-Data Training Protocols

Data Partitioning: The full training set is split into two (or  ) disjoint subsets of 
equal size.

Independent Submodel Training: Two (or  ) network copies are trained to 
convergence—each on its own data split.

Prune-then-Fuse PaF

 Each submodel is first pruned via Intra-Fusion OT-based meta-pruning) 
on its split.

 The pruned weights are then merged via Optimal Transport into one final 
model.

Fuse-then-Prune FaP

 Unpruned submodels are first OT-fused into a single full-size network.

 That fused network is then pruned (and optionally lightly fine-tuned).

One-Shot Aggregation: Unlike data-parallelismʼs per-batch gradient 
synchronization, Split-Data only communicates final weight sets once, 
dramatically reducing communication overhead and latency sensitivity.
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