
TOWARDS META-PRUNING VIA
OPTIMAL TRANSPORT

Type Research Paper

Comments optimal transport

Date

Motivation

Model size vs. deployment feasibility: Modern networks have overgrown in
parameters and memory footprint, making on-device or large-model
deployment costly. Traditional compression (pruning, quantization, distillation)
recovers accuracy via expensive fine-tuning—often infeasible for very large
models.

Fine-tuning-free compression: Data-free methods eliminate retraining on the
original dataset—vital for privacy-sensitive or resource-constrained settings—
but conventional pruning still discards low-importance neurons, causing
accuracy drops that almost always require fine-tuning.

Intra-Fusion This work): Inspired by federated learning and Optimal
Transport–based model fusion OTFusion), this meta-pruning framework
recycles pruned neuronsʼ information into survivors, unifying pruning and
fusion into a single data-free pipeline without accuracy loss.

Optimal Transport OT

A methematical framework to compare probability distributions.

Two discrete distributions

We have a “sourceˮ distribution

supported on points with masses (this could be importance
scores).

June 30, 2025

μ = α δ(x)∑i=1
n

i i

x , … , x 1 n α i

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 1

And a “targetˮ distribution

on points with masses .

Both and .

Cost matrix

 has entries

 , e.g. the squared Euclidean distance

 .

Transport plan

 is a nonnegative matrix where

 represents how much mass you move from to .

Marginal constraints

Row sums equal source masses:

 , i.e. .

Column sums equal target masses:

 , i.e. .

Objective

 ,

i.e. find the cheapest way to move the entire mass of to match .

Think of as piles of “earthˮ at locations and as holes at . We pay cost
 per unit of earth we move from pile to hole . OT finds the cheapest

assignment of earth to holes that exactly fills each hole and empties each pile.

Algorithms and Methodologies

Structured Pruning: Group-by-Group.

ν = β δ(y)∑j=1
m

j j

y , … , y 1 m β j

 α =∑i i 1 β =∑j j 1

C

C ∈ R +
n×m

C =ij c(x , y)i j

∥x −i y ∥j
2

T

T ∈ R +
n×m

T ij x i y j

T 1 =m α T =∑j=1
m

ij α i

T 1 =⊤
n β T =∑i=1

n
ij β j

min ⟨T , C⟩ =T ≥0 F T C ∑i=1
n ∑j=1

m
ij ij

μ ν

α i x i β j y j

C ij i j

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 2

Both conventional pruning and Intra-Fusion start from the same setup:

A group of neuron-pairings (its group cardinality is) → compress down
to pairings ().

An importance vector , which assigns each pairing an agnostic
score (e.g. the -norm of its weights).

Conventional Pruning (Algorithm 1)
 Find the th largest entry in and call it threshold .

 Keep the pairings whose importance .

 Discard the other pairings.

 The resulting group has exactly pairings.

Most prior work has concentrated on crafting ever-better importance metrics ,
but still follows this “keep-top- , drop-the-restˮ routine unchanged.

G n n

m m ≤ n

i ∈ R
1×n

ℓ 1

m i t

m ≥ t

n − m

G new m

i

m

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 3

Intra-Fusion Meta-Pruning (Algorithm 2)
Rather than throwing away the less-important pairings, Intra-Fusion fuses their
information into the survivors via an Optimal Transport OT plan:

 Source distribution :

Treat each of the original pairings as a discrete “pile of massˮ on the space
of neuron-pairing weight vectors, with total mass proportional to its
importance score.

 Target distribution :

Choose “targetˮ neurons—either the same top- survivors or cluster-
centroids of the original —and assign each a probability mass (uniformly or
again by importance).

 Cost matrix :

Quantify how “far apartˮ each source pairing is from each target, e.g. via
normalized -distance of their concatenated weight vectors.

 Solve OT

 .

This yields an transport plan telling how to move mass from each of
the sources into the targets.

 Fuse pairings

Use the columns of as weights: each new “fusedˮ pairing is a weighted sum
of all original pairings, according to the corresponding column of . The
result is a compressed group of cardinality that recycles information
from all original pairings instead of discarding of them.

Transportation cost

Design a metric that measures how similar/dissimilar neurons are.

Batch Normalization

A technique to stabilize and accelerate the training of deep neural networks by
normalizing layer inputs.

Motivation

μ

n

ν

m m m

n

C ∈ R
n×m

ℓ 1

T = arg min ⟨T , C⟩ s.t. T 1 =T ≥0 F m μ, T 1 =⊤
n ν

n×m T

n m

T

n T

G new m

n n − m

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 4

During training, as parameters in earlier layers change, the distribution of
inputs to later layers shifts, forcing those layers to constantly adapt. Batch
normalization BatchNorm) reduces this shift by keeping inputs to each
layer more stable.

The Forward Pass

Given a mini-batch of activations for a single neuron (or
feature channel) in one layer:

Compute batch statistics

 .

Normalize each activation:

,

where is a small constant for numerical stability.

Scale and shift: introduce two learned parameters, (scale) and
(shift), to allow the network to recover the identity transform if needed:

.

The output is then passed on to the next layer.

Inference Mode

At test time, we donʼt have meaningful batch statistics, so BatchNorm uses
running averages of and that were accumulated during training.
Concretely, during training we update

 ,

and at inference we normalize each activation as

 .

Key Properties and Variants

{x , … , x }(1) (m)

μ =B x , σ =
m
1 ∑i=1

m (i)
B
2

 (x −
m
1 ∑i=1

m (i) μ)B
2

=x̂(i)

 σ +ϵ
B
2

x −μ

(i)
B

ϵ

γ β

y =(i) γ +x̂(i) β

y(i)

μ B σ B
2

running_mean ← α running_mean + (1 − α) μ B

running_var ← α running_var + (1 − α) σ B
2

x

=x̂ , y =
 running_var+ϵ

x−running_mean
γ +x̂ β

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 5

Per‐feature/channel normalization In convolutional layers, statistics
are computed over the batch and spatial dimensions, separately for
each channel.

Learnable parameters let the layer choose any desired output
scale and bias.

Use -distance between the neuron-pairingsʼ weight vectors to define the cost
:

 .

OT will preferentially fuse together neurons whose weight‐patterns are more
similar.

BatchNorm layers sit “in the middleˮ of the weights and activations, so if just grab
the raw weight vectors and biases to build the cost matrix , we are ignoring the
fact that every forward pass actually does

 .

The authors “foldˮ a BatchNorm layer into the preceding linear (or convolutional)
layer so that they no longer need a separate BN at inference time. Concretely,
suppose the layer originally computes

 ,

and then we apply BatchNorm:

 ,

where

 is the original weight vector,

 is its bias,

 and are the running mean and variance learned by BatchNorm,

 and are the BNʼs learned scale and shift,

 is a small constant for numerical stability.

We want a single “foldedˮ layer

(γ, β)

ℓ1 C

C =ij

(normalizer)

∥ w −w ∥

(i)
target
(j)

1

C ij

z = w x + b, y = BN(z) = γ +
 σ+ε

z−μ β

z = w x + b

BN(z) = γ +
 σ+ε

z−μ β

w

b

μ σ

γ β

ε

z =new w x +new b new

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 6

that exactly replicates . Plugging in:

 .

Thus we set

 .

Now is absorbed into the weights and bias.

The authors set , then

Probability Distribution

Uniform distribution.

Every neuron pair receives exactly the same probability mass.

If there are total pairs, each pair has probability .

This approach makes no use of the underlying importance values: it treats
all pairs as equally likely.

Importance-informed distribution.

Each pairʼs probability is proportional to its importance score.

Intuitively, neuron pairs deemed more “importantˮ are sampled more often.

To convert raw importance values into probabilities , we need a
normalizing step:

Simple normalization:

Softmax normalization:

 .

Both ensure that all sum to 1

There is no final accuracy difference however we choose the distribution type
according to the authors.

BN(z)

BN(z) = γ +
 σ+ε

w x+b−μ β = (w)x +
 σ+ε

γ ((b −
 σ+ε

γ μ) + β)

w =new w, b =
 σ+ε

γ
new (b −

 σ+ε

γ μ) + β

BN

ε = 0

w =new , b =
 σ

w×γ
new +

 σ

(b−μ)×γ β

N 1/N

I k p k

p =k

 I ∑
j j

I k

p =k

 exp(I)∑
j j

exp(I)k

p k

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 7

Given the cost matrix , and our probability distributions
and

 , we can finally derive the optimal transport map .

Consequently, we proceed to traverse each layer within the group denoted as ,
and rather than removing neurons of diminished significance, we opt to generate
fused neurons through a process of matrix multiplication with the transport map
.

Empirical Results

Figure 3 ResNet-50 on ImageNet

Left panel (ℓ₁ importance) vs. Right panel Taylor importance).

In both cases, as you increase sparsity, accuracy falls—but the Intra-Fusion
curves always lie above their Default counterparts.

Figure 4 ResNet-18 on CIFAR10 & VGG11BN on CIFAR100

Both networks show the same qualitative trend:

C μ

ν T

G

T

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 8

Intra-Fusion (solid) preserves significantly more accuracy than Default
(dashed) at every sparsity level.

Figure 5 directly measures how “closeˮ each pruned modelʼs outputs remain to the
un-pruned ResNet-18 (on CIFAR10, by computing the ℓ₂ distance between their
final logits for a large batch of inputs. Each subplot is a histogram of those
distances under two schemes—Default pruning (red) vs. Intra-Fusion (blue)—at
different neuron-sparsity levels:

(a) 10 % sparsity

Default: mean ℓ₂-distance  2.0

Intra-Fusion: mean  1.5

Blue bars are more tightly clustered near zero, so most outputs stay very
close to the original.

(b) 20 % sparsity

Default: mean  4.6

Intra-Fusion: mean  2.8

Again, Intra-Fusionʼs distribution is shifted significantly toward smaller
deviations.

(c) 30 % sparsity

Default: mean  8.3

Intra-Fusion: mean  5.8

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 9

At higher sparsity the gap widens—the blue histogram remains far more
concentrated at low distances, whereas default pruning spills out to much
larger errors.

Factorizing Model Training

Split-Data Training Protocols

Data Partitioning: The full training set is split into two (or) disjoint subsets of
equal size.

Independent Submodel Training: Two (or) network copies are trained to
convergence—each on its own data split.

Prune-then-Fuse PaF

 Each submodel is first pruned via Intra-Fusion OT-based meta-pruning)
on its split.

 The pruned weights are then merged via Optimal Transport into one final
model.

Fuse-then-Prune FaP

 Unpruned submodels are first OT-fused into a single full-size network.

 That fused network is then pruned (and optionally lightly fine-tuned).

One-Shot Aggregation: Unlike data-parallelismʼs per-batch gradient
synchronization, Split-Data only communicates final weight sets once,
dramatically reducing communication overhead and latency sensitivity.

k

k

TOWARDS METAPRUNING VIA OPTIMAL TRANSPORT 10

